Level set segmentation using image second order statistics

نویسندگان

  • Bo Ma
  • Yuwei Wu
  • Pei Li
چکیده

This paper proposes a novel level set based image segmentation method by use of image second statistics and logarithmic Euclidean metric. Different from previous tensor based image segmentation approaches, the proposed method adopts covariance feature as region-level descriptor rather than pixel-level one. On the basis of feature image, we utilize second order statistics of image feature, i.e., covariance matrix, to model image region representation, which is of low dimension, invariant to uniform illumination change, insensitive to noise, and more importantly provide a natural mechanism of incorporating different types of image features by modeling their correlations. We model image segmentation problem as one finding the optimal segmentation that maximizes the covariance distance between foreground region and background region. Typically, covariance matrices do not lie on Euclidean space. Our solution to this is to exploit logarithmic Euclidean distance as a metric to compute the similarity between two matrices. The experimental results show that covariance matrix as region descriptor do form an effective representation for image segmentation problems, and the proposed image energy can be used to segment images and extract object boundaries reliably and accurately.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Partial Differential Equations applied to Medical Image ‎Segmentation

‎This paper presents an application of partial differential equations(PDEs) for the segmentation of abdominal and thoracic aortic in CTA datasets. An important challenge in reliably detecting aortic is the need to overcome problems associated with intensity inhomogeneities. Level sets are part of an important class of methods that utilize partial differential equations (PDEs) and have been exte...

متن کامل

Quantitative Comparison of SPM, FSL, and Brainsuite for Brain MR Image Segmentation

Background: Accurate brain tissue segmentation from magnetic resonance (MR) images is an important step in analysis of cerebral images. There are software packages which are used for brain segmentation. These packages usually contain a set of skull stripping, intensity non-uniformity (bias) correction and segmentation routines. Thus, assessment of the quality of the segmented gray matter (GM), ...

متن کامل

SIDF: A Novel Framework for Accurate Surgical Instrument Detection in Laparoscopic Video Frames

Background and Objectives: Identification of surgical instruments in laparoscopic video images has several biomedical applications. While several methods have been proposed for accurate detection of surgical instruments, the accuracy of these methods is still challenged high complexity of the laparoscopic video images. This paper introduces a Surgical Instrument Detection Framework (SIDF) for a...

متن کامل

Digital Dental X-Ray Image Segmentation and Feature Extraction

The process of analysis of such images is important in order to improve quantify medical imaging systems. It is significant to analysis the dental x-ray images we need features of image. In this paper we present a method for segmentation and feature extraction of dental x-ray images. The proposed method has been implemented by using level-set method for segmentation after image enhancement and ...

متن کامل

Unsupervised Texture Image Segmentation Using MRFEM Framework

Texture image analysis is one of the most important working realms of image processing in medical sciences and industry. Up to present, different approaches have been proposed for segmentation of texture images. In this paper, we offered unsupervised texture image segmentation based on Markov Random Field (MRF) model. First, we used Gabor filter with different parameters’ (frequency, orientatio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011